A Strong Maximum Principle for Weak Solutions of Quasi-linear Elliptic Equations with Applications to Lorentzian and Riemannian Geometry
نویسندگان
چکیده
The strong maximum principle is proved to hold for weak (in the sense of support functions) suband super-solutions to a class of quasi-linear elliptic equations that includes the mean curvature equation for C spacelike hypersurfaces in a Lorentzian manifold. As one application a Lorentzian warped product splitting theorem is given.
منابع مشابه
Maximum Principles for Null Hypersurfaces and Null Splitting Theorems
The geometric maximum principle for smooth (spacelike) hypersurfaces, which is a consequence of Alexandrov’s [1] strong maximum for second order quasilinear elliptic operators, is a basic tool in Riemannian and Lorentzian geometry. In [2], extending earlier work of Eschenburg [7], a version of the geometric maximum principle in the Lorentzian setting was obtained for rough (C) spacelike hypersu...
متن کاملBoundedness and pointwise differentiability of weak solutions to quasi-linear elliptic differential equations and variational inequalities
The local boundedness of weak solutions to variational inequalities (obstacle problem) with the linear growth condition is obtained. Consequently, an analogue of a theorem by Reshetnyak about a.e. differentiability of weak solutions to elliptic divergence type differential equations is proved for variational inequalities.
متن کاملModeling of the beam discontinuity with two analyses in strong and weak forms using a torsional spring model
In this paper, a discontinuity in beams whose intensity is adjusted by the spring stiffness factor is modeled using a torsional spring. Adapting two analyses in strong and weak forms for discontinuous beams, the improved governing differential equations and the modified stiffness matrix are derived respectively. In the strong form, two different solution methods have been presented to make an a...
متن کاملHarnack Inequalities and ABP Estimates for Nonlinear Second-Order Elliptic Equations in Unbounded Domains
In this paper we are concerned with fully nonlinear uniformy elliptic operators with a superlinear gradient term. We look for local estimates, such as weak Harnack inequality and local Maximum Principle, and their extension up to the boundary. As applications, we deduce ABP type estimates and weak Maximum Principles in general unbounded domains, a strong Maximum principle and a Liouville type t...
متن کاملPositive Solutions of Quasi-linear Elliptic Equations with Dependence on the Gradient
In the present paper we prove a multiplicity theorem for a quasilinear elliptic problem with dependence on the gradient ensuring the existence of a positive solution and of a negative solution. In addition, we show the existence of the extremal constant-sign solutions: the smallest positive solution and the biggest negative solution. Our approach relies on extremal solutions for an auxiliary pa...
متن کامل